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Introduction: the barycentre of a set of networks (1)

Scientific questions:

• de novo design of molecules Ý: aminophosphonate derivatives [1]
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• biomarker for clinical pain [2]: comparison of pain networks (measured by fMRI );
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Results
Developing a functional connectivity signature for tonic pain. 
Using Study 1 as a training dataset (n = 19), we modeled the rela-
tionship between functional connectivity and pain ratings across 
the ‘capsaicin’ and ‘control’ conditions across all participants (Q1 
in Fig. 1a; for its behavioral and physiological results, see Extended 
Data Fig. 1 and Supplementary Results). We trained multiple can-
didate models (a total of 5,916 models for each of pain intensity 
and unpleasantness) using combinations of input features and algo-
rithms (see Extended Data Fig. 2 for details of modeling). Then, we 
evaluated these models using cross-validation (Study 1) and pro-
spective validation (Study 2, n = 42; see Supplementary Fig. 1a for 
the behavioral results of Study 2). We selected the best models for 
pain intensity and pain unpleasantness based on a composite score 
across multiple objectives, including sensitivity in predicting pain 
ratings, specificity to pain versus aversive taste and generalizabil-
ity in the validation dataset18 (see Extended Data Figs. 2 and 3 for  
the details of evaluation criteria and the results).

The best-performing intensity and unpleasantness models both 
used dynamic conditional correlation (DCC)19 with a modified 
279-region version of the Brainnetome parcellation20 that included 
additional midbrain, brainstem and cerebellar regions (Methods). 
The selected modeling algorithm was principal component regres-
sion (PCR)21 with a reduced number of principal components 
(PCs) (21 components for the pain intensity model and 26 for the 
pain unpleasantness model; Supplementary Fig. 2). Because the 
performance of the pain intensity model was slightly better than 

the pain unpleasantness model (Supplementary Tables 1 and 2), 
we focused on the pain intensity model in the following analyses. 
We named this final model the ToPS; naming a model allows the 
same model (with fixed parameters) to be referred to and validated 
across studies22,23. In the validation dataset (Study 2), the ToPS 
model predicted within-individual variation in avoidance ratings 
for tonic pain stimuli with the mean correlation between actual 
and predicted ratings of r = 0.47, P = 3.24 × 10−10, bootstrap test  
(Fig. 2a), and also discriminated the capsaicin condition from the 
bitter taste condition with 76% classification accuracy, P = 0.0009, 
binomial test (Fig. 2b).

Predictive performance of the ToPS. To obtain an unbiased esti-
mate of the predictive performance of the ToPS, we tested the model 
on an additional independent test dataset (Study 3, n = 48), which 
was based on a similar experimental design as Studies 1 and 2, but 
was conducted at a different site on a different study population  
(in South Korea) and had a longer scan duration (20 min)  
than Studies 1 and 2 (see Supplementary Fig. 1b for the behavioral 
results of Study 3).

The ToPS showed good performance in tracking 
within-individual variation in avoidance ratings for tonic pain stim-
uli (correlations between time-binned actual and predicted ratings 
(five bins per run): mean r = 0.51 and P = 3.20 × 10−14 across the 
capsaicin and control runs; mean r = 0.38 and P = 6.51 × 10−6 within 
the capsaicin run; bootstrap tests) (Fig. 2c and Supplementary  
Fig. 3). The ToPS discriminated the capsaicin condition both from 
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Fig. 1 | Overview of research questions and main analyses. a, This study aims to answer the three research questions (Q1–3) using six independent 
datasets and the predictive modeling approach. b, Overview of the experiment and data analyses to answer the research questions. We acquired 
fMRI data while participants experienced tonic orofacial pain and generated many candidate models predictive of pain ratings based on the functional 
connectivity patterns during tonic pain experience (Study 1). The final model was selected through a model competition using a set of predefined criteria 
across training and validation datasets (Studies 1 and 2). We further validated the final model on prospective independent datasets (Studies 3–6). 
Different studies were used for answering different main research questions (for example, Study 3 for Q1, Studies 4 and 5 for Q2 and Study 6 for Q3).
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Introduction: the barycentre of a set of networks (2)

• dataset of graphs,
{
G(1), . . . , G(T)

}
; adjacency matrix of G(t): A(t);

b Goal: find µ̂T

[
P
]
= graph that summarizes the topology and connectivity of

{
G(t)

}
Mathematical framework:

• S is the set of n× n symmetric adjacency matrices with nonnegative weights,

• the n× n adjacency matrix A(t) is sampled from the probability space (S,P);

•we equip the probability space (S,P) with a metric d;

• barycentre [3], or Fréchet mean [4], graph, µ̂T

[
P
]
,

µ̂T

[
P
] def
= argmin

B∈S

T∑
t=1

d2(B,A(t)). (1)

• choice of the distance d influences the topology/connectivity of µ̂T

[
P
]
;

Ü : the distance between graphs should be evaluated in the spectral domain.
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Notations

• [n]
def
= {1, . . . , n};

• 1 def
= [1 · · · 1]T , and J = 11T ;

• O(n) is the orthogonal group;

•G = (V, E) is an undirected unweighted graph;

• the adjacency matrix of G is denoted by A; the degree matrix is denoted byD;

• the symmetric normalized adjacency matrix, Â = D−1/2AD−1/2, is defined by

âij
def
= aij/

√
didj if didj ̸= 0; and âij

def
= 0 otherwise; (2)

• the normalized Laplacian is defined by L
def
= Id−Â;

• the ascending sequence of eigenvalues 0 = λ1 ⩽ · · · ⩽ λn ⩽ 2 of L is denoted by

λ(L) =
[
λ1 · · · λn

]
. (3)
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The Laplacian spectral pseudo-metric

•we define the Laplacian spectral pseudo-metric as

d(L,L′)
def
=

∥∥λ(L) − λ(L′)
∥∥
2

(4)

where λ(L) and λ(L′) are the vectors of eigenvalues of L and L′ respectively.

• d(L,L′): differences – at multiple scales – in topology & connectivity [5, 6].

• no need to solve the node correspondence problem; possible to compare graphs of
different sizes (L is the normalized Laplacian)

Goal: find

µ̂T

[
P
] def
= argmin

B∈S

T∑
t=1

∥∥λ(L(A(t))) − λ(L(B))
∥∥2

2
(5)

Technical difficulties3 :

1.
∥∥λ(L(A(t))

)
− λ(L(B))

∥∥
2
is defined in the spectral domain ...

2. ... but the optimization (5) takes place in S

The Spectral Barycentre Network françois g. MEYER 4/38



From the spectrum to the Laplacian (1)

Solution to the technical difficulties �

1. we say that λ = [λ1, . . . , λn] is realizable if

∃A ∈ S whose normalized Laplacian, L(A), satisfies λ(L(A)) = λ. (6)

2. the set of realizable sequences is denoted by R.

We seek µ̂T

[
P
]
such that

λ
(
µ̂T

[
P
])

= argmin
λ∈R

T∑
t=1

∥λ− λ(L(t))∥22. (7)

If we relax this minimization problem (λ ∈ Rn instead of λ ∈ R), then

1. the solution to (7) is the sample mean ÊT [λ]
def
= T−1

∑T
t=1 λ(L(A(t)));

2. ... but ÊT [λ] has no guarantee to be realizable.
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From the spectrum to the Laplacian (2)

... Yet more technical difficulties3 :

1. the knowledge of λ
(
µ̂T

[
P
])

is insufficient to reconstruct a barycentre graph;

2. we need a basis of eigenvectors Ψ ∈ O(n) of a valid normalized Laplacian,

∃A ∈ S, Ψ diag
(
ÊT [λ]

)
ΨT = Id−D−1/2AD−1/2, (8)

whereD is the degree matrix associated to A;

3. if Ψ satisfies (8), then we can define µ̂T

[
P
]
by

µ̂T

[
P
] def
= D1/2

[
Id−Ψ diag

(
ÊT [λ]

)
ΨT

]
D1/2. (9)

... Additional difficulties3 :

1. if E
[
P
]
contains modular communities, rich clubs, hubs, trees, etc. then the graphs

A(1), . . . ,A(T) will share such topological structures;

2. we would like µ̂T

[
P
]
to also inherit such structures;
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From the spectrum to the Laplacian (3)

... Additional difficulties3 :

• given a random choice of Ψ ∈ O(n) that satisfies (8), then µ̂T

[
P
]
in (9), may have a

very different topological structure than that of E
[
P
]
.

Informally, we need to impose that

µ̂T

[
P
]
≈ E

[
P
]
. (10)

Remark: the trivial choice µ̂T

[
P
]
= ÊT [P] does not meet the constraint (7), since we

have λ(ÊT [P]) ̸= ÊT [λ] [7, 8].

Example of solution to (10): Ψ is an “average on O(n)” of the bases of eigenvectors
associated with the respective

{
L(1), . . . ,L(T)

}
of the graphs in the sample [9, 10]
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From the spectrum to the Laplacian (4)

In summary, given ÊT [λ] (measured from the data) we seek µ̂T

[
P
]
∈ S such that,

L
(
µ̂T

[
P
])

= Ψ diag
(
ÊT [λ]

)
ΨT ;

Ψ ∈ O(n);

µ̂T

[
P
]
≈ E

[
P
]
.

(11)

Original contributions{

lwe prove that it is possible to solve (11) using a “customized” Soules basis Ψ;

lwhen
(
S,P

)
is the probability space associated with a balanced stochastic block

model, we prove that µ̂T

[
P
]
= E

[
P
]
.

� experiments on real-life graphs demonstrate that our approach works beyond the
controlled environment of balanced stochastic block models;

} our theoretical analysis could probably be extended to a larger class of community
networks.

� Theoretical details: arXiv:2502.00038 (2025), https://arxiv.org/abs/2502.00038
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The setting: the stochastic block model



The stochastic block model

•we derive theoretical guarantees for our algorithms when the graphs are sampled
from

(
S,P

)
= stochastic block model (e.g., [11]).

• quintessential exemplar of a network with community structure� [12–14].

• universal approximants (under various norms or distances) [14–18]
$ building blocksá to analyse more complex networks;

• a discrete version of step graphons [19–22], which are dense in the space of graphons
for the topology induced by the cut-norm;

• amenable to a rigorous mathematical analysis;

• cutting edge of rigorous probabilistic analysis of random networks [23].
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The stochastic block model SBM
(
p, q, n

)
• Let {Bk}, 1 ⩽ k ⩽M be a partition of the vertex set [n] intoM contiguous blocks;

• p = [p1, · · · , pM] is the vector of edge probabilities within each block;

• q is the edge probability between blocks;

•A ∼ SBM
(
p, q, n

)
if

1. aij = aji, i < j are independent (up to symmetry);

2. aij ∼ Bernoulli(pm) if (i, j) ∈ Bm × Bm;

3. aij ∼ Bernoulli(q) if (i, j) ∈ Bm × Bm′ ,m ̸= m′;

4. matrix of edge probabilities P def
= E

[
P
]
;

5. the SBM
(
p, q, n

)
is balanced if |Bm| = n/M, and p1 = · · · = pM.
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Intermezzo:
a day in a French primary school

o



a day in a French primary school

• dynamic social-contact graphs collected in a French primary school [24–34]).

• students carried RFID tags that recorded (every 20 seconds) face-to-face contacts
� during two school days [24]

• primary school = five grades; each grade is divided into two classes (A & B);

• each student (n = 232) is a node of the network.

• school day: 8:30 AM – 4:30 PM; changes in connectivity and topology:

¨ 10:30 – 11:00 AM: morning recess;
G 3:30 – 4:00 PM: afternoon recess;

/,Ë two lunch periods: 12:00 PM– 1:00 PM, and 1:00 – 2:00 PM.

• divide the school day into morning and afternoon periods;

• morning period: T = 35 time intervals of ≈ 6 minutes;

• afternoon period: T = 26 time intervals of ≈ 6 minutes.

• for each time sample t, we construct an undirected unweighted graph G(t)

by aggregating face-to-face contact events;
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the contact network during significant connectivity and topological changes

9:00 a.m. 10:20 a.m. 10:50 a.m. 10:57 a.m.

11:57 a.m. 12:13 p.m. 12:54 p.m. 1:46 p.m.

2:00 p.m. 2:03 p.m.
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the French primary school is a sequence of stochastic block models

1A

1B

2A

2B

3A

3B

4A

4B

5A

5B

1A

1B

2A

2B

3A

3B

4A

4B

5A

5B

1A

1B

2A

2B

3A

3B

4A

4B

5A

5B

9:00 AM 10:30 AM 12:00 PM
beginning of the day morning recess end of morning period
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Distribution of the eigenvalues of L(A(t))

morning afternoon

• stochastic nature of the network −→ bump-shaped bulk centered around 1;

• 0 = λ1 ⩽ · · · ⩽ λ10 are separated from the bulk;

• each of these 10 eigenvalues is associated with a specific community;

→ signature of the stochastic block model [7, 8, 35–37].
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The Soules bases



Soules’ bases: formal definition V

• Soules basis: orthogonal matrix that is constructed iteratively;

• at level 1, we choose ψ1
def
= n−1/21.

• at level l: apply a Givens rotations to ψ1:

➀ the set [n] is partitioned into l ordered intervals I(l)j , 1 ⩽ q ⩽ l.

➁ level l' level l+ 1: select an interval, I(l)j = [i0, i1), and i∗ ∈ [i0, i1];

➂ I
(l+1)
j

def
= [i0, i

∗], and I(l+1)
j+1

def
= [i∗ + 1, i1]

➃

ψl+1(i)
def
=

1∥∥ψ1(i0 : i1)
∥∥


∥∥ψ1(i
∗ + 1 : i1)

∥∥∥∥ψ1(i0 : i∗)
∥∥ ψ1(i) if i0 ⩽ i ⩽ i∗

−

∥∥ψ1(i0 : i∗)
∥∥∥∥ψ1(i∗ + 1 : i1)
∥∥ψ1(i) if i∗ + 1 ⩽ i ⩽ i1,

0 otherwise

(12)
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Soules’ bases: one iteration V

=

i

I
(l+1)
j+1I

(l+1)
j

i *

I
(l)
q

0i

I
(l)
j

1

1. a node in the Soules binary tree is triggered by the
splitting of [i0, i1] = [i0, i

∗] ∪ [i∗ + 1, i1].

2. ψl+1 is created by splitting I(l)j = [i0, i1]

I
(l)
j = [i0, i1] = [i0, i

∗] ∪ [i∗ + 1, i1];

3. ψm and ψm′ , m ̸= m′, are either nested ...
or they do not overlap;

b ⟨ψm,ψm′⟩ = 0,
]

(l)
j 1i

0i

0i

1i

I
(l)
j 0i i*

i*

i*
1i[[ , ] + 1,

Il

l+1

ψ

ψ
level l+1

level l

=
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Soules’ bases: the multiscale tree V

1. select I(l)j such that ∀1 ⩽ k ⩽ l, ψk
∣∣
I
(l)
j

is constant

2. split I(l)j at node i∗: create ψl+1

3. ψl+1
∣∣
[i0,i∗]

> 0, ψl+1
∣∣
[i∗+1,i1]

< 0

4. a node in the binary tree is created by ψl+1

ψ
1

ψ
2

ψ
3

ψ
4

ψ
5

ψ
6

l = 2

l = 1

l = 3

l = 4

l = 5

l = 6

2

I
1

(2)
I
1

(2)
I
2

(3)
I
1

(3)
I

(1)

(6)
I
2

(6)
I
3

l = 5

l = 4

l = 3

l = 2

l = 1

l = 6

I

(5)
I
2

(5)
I
3

(4)
I
3

(4)

2

5. each Soules basis is associated with a binary tree;

6. the leaves are the intervals that are not split.
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What is the Talk Really About?
Informal description of the results } and line of attack G

m



Idea 1.

For a balanced SBM
(
p, q, n

)
composed ofM blocks,

E
[
L
]
ij
=

M

n(p+ (M− 1)q)


−p if ∃m ∈ [M], (i, j) ∈ Bm × Bm,

1 if i = j,
−q otherwise.

(13)

$ E
[
L
]
for SBM

(
p, q, n

)
is constant over blocks Bm × Bm;

b Ψ =
[
ψ1 · · · ψn

]
solution to (11) should be designed such that

L
(
µ̂T

[
P
])

=

n∑
k=1

ÊT [λk]ψkψ
T
k (14)

is piecewise constant over the blocks Bm × Bm, 1 ⩽ m ⩽M.
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Idea 2.

1. λk(L) for a balanced SBM
(
p, q, n

)
composed ofM blocks are given by [38],

λk(L) =


0 if k = 1,

Mq

p+ (M− 1)q
if k = 2, . . . ,M,

1 if k =M+ 1, . . . , n,

(15)

with probability converging to 1 as the graph size n→ ∞;

2. ÊT [λj] converges for large n to the estimate above; we substitute ÊT [λk] for the
(large graph size n) estimates (15) in the eigendecomposition of L

(
µ̂T

[
P
])

(14).

b Our goal: find µ̂T

[
P
]
∈ S such that


L
(
µ̂T

[
P
])

=

n∑
k=1

ψkψ
T
k −

{
p− q

p+ (M− 1)q

( M∑
j=1

ψjψ
T
j

)
+

Mq

p+ (M− 1)q
ψ1ψ

T
1

}
[
ψ1 · · · ψn

]
∈ O(n);

µ̂T

[
P
]
≈ E

[
P
]
.

(16)
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Idea 2.

3. the comparison of the topology of µ̂T

[
P
]
with that of E

[
P
]
for SBM

(
p, q, n

)
,

µ̂T

[
P
]
≈ E

[
P
]
, (17)

can be replaced by the equivalent condition,

L
(
µ̂T

[
P
])

= E
[
L
]
, (18)

where E
[
L
]
is given by (13). We combine (18) with (13), and (16) to get the program

b Our goal: find Ψ =
[
ψ1 · · · ψn

]
∈ O(n) such that

n∑
k=1

ψkψ
T
k = Id .

ψ1 = n−1/21,

M∑
k=1

ψkψ
T
k(i, j) =

{
M/n if ∃m ∈ [M], (i, j) ∈ Bm × Bm,

0 otherwise,

(19)
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Idea 3.

$ design an algorithm that explores the library of Soules bases [39],
and returns Ψ =

[
ψ1 · · · ψn

]
, such that

ψ1 = n−1/21,
n∑

k=1

ψkψ
T
k = Id,

M∑
k=1

ψkψ
T
k(i, j) =

{
M/n if ∃m ∈ [M], (i, j) ∈ Bm × Bm,

0 otherwise,

(20)

RemarksZ

•ψ1 = n−1/21 is very standard for the construction of Soules bases;
→ each ψk is piecewise constant over [n];

• the condition
∑n

k=1ψkψ
T
k = Id comes for free with Soules bases [39];

• the zero-crossing of ψkψ
T
k is aligned with the jumps between the blocks in E

[
P
]
;
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Idea 3: some details 9

1. coarse scale: ψ1 = n−1/21 whose support is [n];

2. finer scale: ψ2 detect the largest gradient between any pair of blocks Bm ×Bm and
Bm′ × Bm′ ;

$ align the zero-crossing of ψ2ψ
T
2 with the boundaries between two blocks of

ÊT [P] with the largest jump in {p1, . . . , pM};

$ψ2 maximizes |⟨ψ2ψ
T
2 , ÊT [P]⟩|2 Ý;

3. next scales (ψk, k ⩾ 3): proceeds iteratively by detecting all the boundaries between
the remaining blocks Bk;

4. theoretical analysis: we substitute the population mean E
[
P
]
for the sample mean

ÊT [P] (see details: https://arxiv.org/abs/2502.00038).
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Algorithm 1: A greedy exploration of the Soules library

1. compute ÊT [P]
def
= T−1

∑T
t=1A

(t)

2. set ψ1 = n−1/21; find ψ2 = argmax
ψ2defined by(12)

|⟨ψ2ψ
T
2 , ÊT [P]⟩|2.

3.ψ3 has its support inside either one of the two sets {ψ2 ⩾ 0} or {ψ2 ⩽ 0};

4. maximize the magnitude of the inner product between ψ3ψ
T
3 and

the reconstruction error,
[
ÊT [P] − ⟨ÊT [P] ,ψ2ψ

T
2 ⟩ψ2ψ

T
2

]
,

ψ3 = argmax
ψ3defined by(12)

∣∣⟨ψ3ψ
T
3 , ÊT [P]⟩

∣∣2, (21)

5. repeat until we find ψn.

$

100 200 300 400 500

-0.05

0

0.05 A1

A2

A3

A4
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� Theoretical guarantees for Algorithm 1

• E
[
P
]
= P is the edge probability matrix of a balanced SBM

(
p, q, n

)
;

•we observe that ÊT [P] → E
[
P
]
when the graph size n→ ∞;

•we analyse the algorithm when its input is E
[
P
]
(instead of ÊT [P]);

•ψ1 = n−1/21;
[
ψ1 · · · ψn

]
is the Soules basis returned by Algorithm 1.

Lemma 1. We have

M∑
k=1

ψkψ
T
k(i, j) =

{
M/n if ∃m ∈ [M], (i, j) ∈ Bm × Bm,

0 otherwise.
(22)

Corollary 1.
[
ψ1 · · · ψn

]
solves (20).

We reconstruct the normalized Laplacian of µ̂T

[
P
]
,

L
(
µ̂T

[
P
])

=

n∑
k=1

ÊT [λk]ψkψ
T
k . (23)

See https://arxiv.org/abs/2502.00038 for the proofs.
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A partial reconstruction

1. in practice, the estimator L
(
µ̂T

[
P
])

in (23) is very poor;

2. the full expansion (23) of L
(
µ̂T

[
P
])

using
[
ψ1 · · · ψn

]
is plagued by:

a) λn ⩾ λn−1 ⩾ · · · are noisy because they come from the bulk;

b)ψn,ψn−1, . . . have small support and are therefore unstable;

3. ... but the reconstruction in (16) for a balanced SBM depends only on
[
ψ1 · · ·ψM

]
÷ replace the full reconstruction (23) with the following truncated estimator,

L̂M

(
µ̂T

[
P
]) def

= Id−

M∑
k=1

(
1− ÊT [λk]

)
ψkψ

T
k ; (24)

4. we propose the following estimator of the adjacency matrix of the barycentre graph,

µ̂M
T

[
P
] def
= D̂1/2

( M∑
k=1

(
1− ÊT [λk]

)
ψkψ

T
k

)
D̂1/2. (25)
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A technical detail '

• is A = a stochastic block model? ...

• yes ... it was generated by P =
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

, and we applied a permutationB on the
adjacency matrix

• our algorithm necessitates that ÊT [P] be “well-aligned”, A =

�we aggregate the nodes into clusters wherein ÊT [P] is approximately constant

•we use a spectral clustering algorithm based on the eigenvectors of L(ÊT [P])

• equivalent to the approximation of each A(t) using a step graphon;
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Spectral clustering of the nodes.

• the clustering of the nodes is not always accurate;

• but: the greedy algorithm relies on theM coarsest scale Soules basis, ψ1, . . . ,ψM;

•ψk is determined by the computation of
∣∣⟨ψkψ

T
k , ÊT [P]⟩

∣∣2;
÷ the support of ψk is large for k = 2, 3, . . ., and ψkψ

T
k is piecewise constant;

$ the noise in ÊT [P] is partly suppressed when computing
∣∣⟨ψkψ

T
k , ÊT [P]⟩

∣∣2;
•ψk are well aligned along the boundaries of large “noisy blocks” of ÊT [P].

B $

100 200 300 400 500

-0.05

0

0.05 A1

A2

A3

A4
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Experiments
software: ¹ https://github.com/francoismeyer/barycentre-network

n

https://github.com/francoismeyer/barycentre-network


Rate of convergence of µ̂M
T

[
P
]

as a function of n

•M = 4 communities of sizes 63, 147, 105, 197;

• edge probabilities pi = cilogn2/n, ci ∼ U[1, 4], and q = 2 logn/n;
the graphs are sparse and are connected almost surely.

•A(t) is permuted with a different random permutation for each t;

• network size: n = 100 −→ 1, 075; we compute the mean squared error,

n−2
∥∥E[P]− µ̂M

T

[
P
]∥∥2

F

def
=

1

n2

n∑
i=1

n∑
j=1

∣∣∣pij − p̂ij∣∣∣2, (26)

•we found n−2
∥∥E[P]− µ̂M

T

[
P
]∥∥2

F
∝ n−1.84;

• same order as n−1 log(M) + n−2M2, the optimal (minimax) rate for the estimation
of graphons under the mean squared error [18, 22, 40];

• concentration phenomenon is in effect: validates the theoretical derivations that
were obtained in the limit n→ ∞;

• our approach works beyond the balanced stochastic block models.
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n

1
0
0

1
3
0

1
7
0

2
2
1

2
8
7

3
7
4

4
8
7

6
3
4

8
2
6

1
0
7
5

lo
g
10

(

n
−
2
‖I
E
[IP

]
−
µ̂µ
M N
[IP

]‖
2 F

)

-12

-10

-8

-6

Mean squared error n−2
∥∥E[P]− µ̂M

T

[
P
]∥∥2

F
as a function of the network size, n.
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effect of the number of blocks M on the estimation of µ̂M
T

[
P
]

• balanced SBM
(
p, q, n

)
, n = 1, 024 nodes;

•M communities of sizes n/M;

• number of blocks:M = 2 −→ 64;

•whenM becomes large, then λ2, . . . , λM all converge to 1.

• λ2, . . . , λM are no longer separated from the bulk;

• the truncated reconstruction (25) becomes numerically unstable,

• the mean squared error n−2
∥∥E[P]− µ̂M

T

[
P
]∥∥2

F
increases withM.
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M

2 4 8 16 32 64

lo
g
10

(

n
−
2
‖I
E
[IP

]−
µ̂µ
M N
[IP

]‖
2 F

)

-18

-16

-14

-12

-10

-8

Mean squared error n−2
∥∥E[P]− µ̂M

T

[
P
]∥∥2

F
as a function of the number of blocks,M.
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Real world networks

• French primary school dataset [24];

• exclude the lunch period because many students leave the schoolw to take their
lunch¿ at home;

• morning period is divided into T = 35 time intervals of approximately 6 minutes;
morning barycentre graph is computed using the T graphs;

• the afternoon is divided into T = 26 time intervals of approximately 6 minutes; af-
ternoon barycentre graph is determined using the T graphs;

• For each t = 1, . . . , T we construct an undirected unweighted graphG(t), where the
n = 232 nodes correspond to the students in the 10 classes;

•we consider the hypothesis that each class is a community of connected students;

• In fact, students in each class are only weakly connected (e.g., 9:00 AM, and 2:03
PM);

: goal of the experiment: recover the communities determined by the classes.
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Morning [top] and Afternoon [bottom] periods

1A

1B

2A

2B

3A

3B

4A

4B

5A

5B

1A

1B

2A

2B

3A

3B

4A

4B

5A

5B

graph of the average network ÊT [P] barycentre graph µ̂M
T

[
P
]

1A

1B

2A

2B

3A

3B

4A

4B

5A

5B

1A

1B

2A

2B

3A

3B

4A

4B

5A

5B
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b the Laplacian spectral barycentre graph µ̂T

[
P
]

recovers the classes

• recesses and lunchtime periods trigger significant changes in the number of links
between the 10 classes;

• the community structure associated with the individual classes collapses in the
sample mean adjacency matrix ÊT [P];

• in contrast λ
(
L(A(t))

)
, t = 1, . . . , T are much more stable

morning afternoon
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Thanks!

... Questions?
k
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